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Real and Complex Techniques
in one and many dimensions

The theory of a complex variable has intimate connections with the
harmonic analysis. It was pretty obvious from the beginning that several
complex variables cannot serve a similar role to the theory of harmonic
functions in many dimensions.

E. Stein and his school developed real variable technique to fill the gap.
It was primary based on the Hardy-Littlewood maximal functions.

Clifford analysis, which flourished a bit later, provides the right path to
treat harmonic functions in the spirit of complex variables.

It seems, that two techniques are based on different ideologies and
sometime people confront one to another.



Real and Complex Techniques
in Harmonic Analysis

Both methods seems to have clear advantages. The real variable
technique:

1 does not require an introduction of the imaginary unit for a study of
real-valued harmonic functions of a real variable (Occam’s Razor);

2 allows a straightforward generalisation to several dimensions.

By contrast, an access to the beauty and mighty of analytic functions
(e.g., Möbius transformations, factorisation of zeroes, etc.) is the main
reason to use the complex variable technique.



Complex vs real elucidated



Complex vs real elucidated



Complex Methods
in the upper half-plane

1 The Cauchy and Poisson integrals:

f(t) 7→ f(z) =
1

2πi

∫
R

f(t)dt

t− z
, f(t) 7→ f(z) =

1

π

∫
R

f(t)ydt

(t− x)2 + y2
.

2 The upper half-plane of complex numbers C+ = {z | =z > 0}

R to

C+

3 The Cauchy–Riemann and Laplace equations on C+.

4 Boundary limit values lim
y→0+

f(x+ iy) on the real line.

5 The Hardy space Hp, that is Lp(R) functions with analytic
extension to C+.

6 Sokhotski–Plemelj formula, singular integrals (SIO), e.g. the
Szegö projection L2(R)→ H2.



Real Variable Methods
and Maximal Function

The techniques which do not use neither analytic or harmonic functions:

1 The Hardy–Littlewood maximal function

f(t) 7→ f∗(x) = sup
I3x

1

|I|

∫
I

|f(t)| dt;

2 Only work on the real line?
Note the hidden two-parameter family parametrising intervals I!

3 The dyadic squares techniques:

4 Non-tangential maximal function.

5 The Hardy space of functions with atomic decomposition;

6 Singular integrals.



Complex and Real Methods
the comparison

1 The Cauchy integral

f(t) 7→ f(z) = 1
2πi

∫
R
f(t)dt
t−z ;

2 The upper half-plane

C+

3 The Cauchy–Riemann
equations;

4 Limit values limy→0+ f(x+ iy);

5 The Hardy space (analytic);

6 Singular Integrals.

1 The HL maximal function
f∗(x) = supI3x

1
|I|

∫
I |f(t)| dt;

2 Only work on the real line?

3 The dyadic squares

4 NT maximal function;

5 The Hardy space (atomic);

6 Singular Integrals.



Affine Group
Dilations and Shifts

Combining two operations—dilations and shits—on R we obtain the
affine or ax+ b group G = Aff:

(a,b) · (a ′,b ′) = (aa ′,ab ′ + b), a ∈ R+, b ∈ R

Aff

b

a

Identity is (1, 0) and the inverse (a,b)−1 = ( 1a ,−ba).
Outer automorphism: J : (a,b) 7→ (a,−b).
A left invariant (Haar) measure on Aff is a−2 dadb.
An isometric representation of Aff on V = Lp(R) is given by the formula:

[ρp(a,b) f](x) = a−
1
p f

(
x− b

a

)
. (1)

It is called the quasi-regular representation and it is reducible.



Affine Group
Unitary representations

An alternative co-adjoint representation acts isometrically on Lp(R):

[ρ̂p(a,b) f](λ) = a
1
p e−2πibλf(aλ). (2)

Since a > 0, there is a decomposition into invariant subspaces of ρ̂p:

Lp(R) = Lp(−∞, 0)⊕ Lp(0,∞). (3)

Denote by ρ̂−p and ρ̂+p restrictions of ρ̂p to these subspaces, the
subrepresentations are irreducible and not equivalent to each other.
Gelfand&Naimark showed that any unitary irreducible representation of
Aff is equivalent to either ρ̂−2 or ρ̂+2 . There is a unitary intertwining
operator between the quasi-regular and co-adjoint representation—the
Fourier transform:

Ff(λ) =

∫
R
f(x)e−2πixλ dx.

The outer automorphism J swaps ρ̂−2 or ρ̂+2 .



Affine Group
and the Fourier transform

Definition 1.
The Hardy space Hp is an irreducible component of Lp(R) of the
quasi-regular representation of Aff.

It is easy to see, that this coincides with one of the traditional definitions
of H2 as the space of L2 functions such that Fv(λ) = 0 for λ < 0.
In relation to Aff, the Fourier transform

• intertwines shifts in the quasi-regular representation to operators of
multiplication in the co-adjoint representation;

• intertwines dilations in the quasi-regular representation to dilations
in the co-adjoint representation;

• maps the decomposition L2(R) = H2 ⊕H⊥2 into spatially separated
spaces with disjoint supports;

• anticommutes with J, which interchanges ρ+2 and ρ−2 .



Wavelets from Groups
Locked in Admissibility

For a group G = Aff, its representation ρ2 in L2(R) and a given vector
v ∈ L2(R) there is the wavelet transform:

Wv : f 7→ f̂(g) =
〈
ρ(g−1)f, v

〉
= 〈f, ρ(g)v〉 , f ∈ L2(R), g ∈ G. (4)

The inverse wavelet transform L2(G)→ L2(R) with the reconstructing
vector w ∈ L2(R) is done by the integration over the Haar measure:

Mwh =

∫
G

h(g)w(g)dg, where w(g) = ρ(g)w. (5)

To have unitary operators we need to put the admissibility condition:∞∫
0

|v̂(ξ)|2

ξ
dξ <∞ or

∫
R
v(x)dx = 0. (6)

For two (possibly different) admissible v and w we still
have MwWv = kI.



Break Through Admissibility
motivating examples

If we could drop the admissibility, then we can incorporate into covariant
transform many important familiar examples from the harmonic analysis.

Example 1 (Complex variable technique).

Take v(x) = 1
x+i , then wavelets coincide with the Cauchy kernel:

[ρp(a,b)v](x) = a−
1
p

1(
x−b
a

)
+ i

= a−
1
q

1

x− (b− ia)
.

Thus the Cauchy integral (the wavelet transform) maps functions on R
to functions on G = Aff, which is commonly confused with the upper
half-plane in C.

Example 2 (Real variable technique).

Similarly 1
x2+1

produces the Poisson kernel and the corresponding
wavelet transform is the Poisson integral. Again, with extension to
G = Aff, rather than the upper half-plane in R2.



The Hardy Pairing
Beyond Admissibility

For contravariant transform we can drop admissibility if, instead of the
Haar integration, we use the left invariant Hardy-type pairing on G = Aff:

〈f1, f2〉H = lim
a→0

∞∫
−∞

f1(a,b) f2(a,b)
db

a
. (7)

Example 3 (The boundary limit).

Take w(t) = 1
2χ[−1,1](t), then the reconstruction formula becomes:

[Mwf](x) = lim
a→0

∞∫
−∞

f(a,b)a−
1
p
χ[−1,1]

2

(
x− b

a

)
db

a

= lim
a→0

a−
1
p

1

2a

x+a∫
x−a

f(a,b) db.

Thus we obtained the “boundary” value of a function on Aff.



Intertwining Properties
and analyticity

Recall the left Λ(g) : f(h) 7→ f(g−1h) and the right R(g) : f(h) 7→ f(hg)
actions of G on L(G). The well-known intertwining properties of the
wavelet transform and the left action:

Wvρ(g) = Λ(g)Wv and MwΛ(g) = ρ(g)Mw.

It is less-known that the right action is intertwined with the action on
mother wavelet (for M with a possible modulation):

R(g) ◦Wv = Wρ(g)v and Mw ◦ R(g) = Mρ(g−1)w.

Corollary 2.

If the mother wavelet v is annihilated by an operator A =
∑
J ajdρ

Xj
B , the

wavelet transform Wvf(g) = 〈f, ρ(g)v〉 is in the kernel of the operator
D =

∑
j ājL

Xj.



Examples of Analyticity
For the affine group the derived and Lie actions are:

[dρAf](x) = −f(x)− xf ′(x), [dρNf](x) = −f ′(x), LA = a∂a, LN = a∂b.

Example 4 (Cauchy–Riemann and Laplace operators).

• The mother wavelet 1
x+i is a null solution of the operator

−dρA − idρN = I+ (x+ i) ddx .

The wavelet transform are the null solutions to the operator
−LA + iLN = ia(∂b + i∂a)—the Cauchy–Riemann operator.

• The function 1
π

1
x2+1

is a null solution of the operator:

(dρA)2 − dρA + (dρN)2 = 2I+ 4x ddx + (1 + x2) d
2

dx2
.

The Poisson integral produces null solutions of
(LA)2 − LA + (LN)2 = a2(∂2b + ∂2a)—the Laplacian.



Laplace, Fourier and Cauchy transforms
from the co-adjoint representation

A mother wavelet v0 satisfying (−dρ̂A − idρ̂N)v0 = −λ(2π+ ∂λ)v0 = 0 in
the co-adjoint representation (like 1

x+i in the quasi-regular) is

v0(λ) = e−2πλ. The respective coherent states are
ρ̂(a,b)v0(λ) = e−2π(a+ib)λ and the corresponding wavelet transform:

[Ŵf](a,b) = 〈f, ρ̂(a,b)v0〉 =
∫
R+

f(λ) e−2πi(a−ib)λ dλ

λ

is effectively the Laplace transform. Since Ŵ ◦ F and W intertwine the
same pair of representations (ρ and Λ), they are different by a factor.

Corollary 3.

Up to some constant factors:

1 The Fourier transform of 1
x+i is e−2πλχ[0,∞].

2 The composition of the Fourier and Laplace transforms is the
Cauchy integral.

3 lim
a→0

[Ŵf](a,b) = f̂(b), if f̂ ∈ L1(R)..



Further examples
discrete “analyticity”

Example 5 (Dyadic squares).

The function χ[−1,1] is a null solution of the
following functional equation:(

I− ρ∞(12 , 1
2) − ρ∞(12 ,−1

2)
)
χ[−1,1] = 0.

1

1

Consequently, the image of wavelet trans-
form Wm

p solves the equation:

(I− R(12 , 1
2) − R(

1
2 ,−1

2))f = 0 or

f(a,b) = f(12a,b+ 1
2a) + f(

1
2a,b− 1

2a).

The last relation is the key to the dyadic
cubes technique.



Composing Co- and Contra- Transforms
Hilbert spaces

For square-integrable representations and admissible vectors we know
that MvWw = kI (from Schur’s Lemma).
Let the mother wavelet v(x) = δ(x) be the Dirac delta function, then the
wavelet transform Wδ is [Wδf](a,b) = f(b).
Take the reconstruction vector w(t) = (1 − χ[−1,1](t))/(tπ), consider Mw

produced by the Hardy pairing. The composition of both maps is:

[Mw ◦Wδf](t) = lim
a→0

1

π

∞∫
−∞

f(b) ρ∞(a,b)w(t)
db

a

= lim
a→0

1

π

∞∫
−∞

f(b)
1 − χ[−a,a](t− b)

t− b
db

= lim
a→0

1

π

∫
|b|>a

f(b)

t− b
db. (8)



Composing Co- and Contra- Transforms
Hilbert transform

Thus, we obtained:

[Mw ◦Wδf](t) = lim
a→0

1

π

∫
|b|>a

f(b)

t− b
db.

This is the Hilbert transform H, an example of SIO defined through the
principal value in the sense of Cauchy.
Schur’s Lemma tells that H = k1IH2

⊕ k2IH⊥2 for some constants k1,
k2 ∈ C.
Furthermore, we can directly check that HJ = −JH, thus k1 = −k2.
An evaluation of H on a simple function from H2 (say, the Cauchy kernel
1
x+i) gives the value of the constant k1 = −i. Thus, H = (−iIH2

)⊕ (iIH⊥2
).

Proposition 4 (Uniqueness of SIO on the real line).

Any bounded linear operator on L2(R) commuting with quasi-regular
representation ρ2 and anticommuting with reflection J is a constant
multiple of the Hilbert transform (??).



Composing Co- and Contra- Transforms
Banach spaces

Let w(t) = χ[−1,1](t) and w(a,b) = ρ∞(a,b)w. Obviously,

w(a,b)(0) = w(−
b
a) is an eigenfunction for operators Λ(a ′, 0), a ′ ∈ R+ of

the left regular representation of Aff, i.e. Λ(a ′, 0)w(a,b)(0) = w(a,b)(0).
Then:

[MH
w ◦Wvf](0) = [MH

Λ(1/a,0)w ◦Λ(1/a, 0) ◦Wvf](0)

= [MH
w ◦Λ(1/a, 0) ◦Wvf](0)

= [MH
w ◦Wv ◦ ρ∞(1/a, 0)f](0).

For v ∈ L1(R) and a continuous f such that f(0) = 0, the expression
Wvρ∞(1/a, 0)f tenses to 0 as a→ 0. By the linearity, for any continuous
function f the above expression is cf(0), where c =

∫
R v dt 6= 0 (cf. the

admissibility condition
∫
R v dt = 0).

For uniformly continuous functions, we can transfer to any point x ∈ R
by the commutation of MH

w∗ ◦Wv with the shifts ρ∞(1, x).
Thus, MH

w∗ ◦Wv = cI, e.g. the boundary behaviour of the Poisson
integral.



Summary

• Complex and real methods as well as wavelets are closely related
branches of the same construction, which uses the affine group.

• The Cauchy and Poisson integrals, maximal functions are build by
the same method as wavelet transform.

• Boundary values of analytic and harmonic functions, non-tangential
maximal functions are relatives of the inverse wavelet transform.

• The Cauchy–Riemann and Laplace equations, together with dyadic
squares follows from the intertwining properties of the wavelet
transform.

• The Hardy space is an irreducible component of the affine group
representation.

• Boundary values of analytic extensions, maximal functions and SIO
are examples of composition of the wavelet transform and inverse
wavelet transform, possibly with different analysing and
reconstructing vectors.



Lie groups and Lie algebras

Definition 5.
A Lie algebra is a vector space g together with the Lie bracket: a
non-associative bilinear map g× g→ g : (X, Y) 7→ [X, Y] such that:

1 It is alternating: [X, Y] = −[Y,X].

2 Satisfy the Jacobi identity

[x, [y, z]] + [z, [x,y]] + [y, [z, x]] = 0, for all x,y, z ∈ g.

Definition 6.
A real Lie group is a group that is also a finite-dimensional real smooth
manifold, in which the group operations of multiplication and inversion
are smooth maps. That is, the mapping

(x,y) 7→ x−1y

be a smooth mapping of the product manifold G×G into G.



Connecting Lie groups and Lie algebras
The key idea of analysis is a linearization of complicated object in small
neighbourhoods. Applied to Lie groups it leads to the Lie algebras.
There are several standard possibilities to realise the Lie algebra g
associated to a Lie group G:

1 Generators X of one-parameter subgroups: x(t) = exp(Xt), t ∈ R.

2 Tangent vectors to the group at the group unit.

3 Invariant vector fields (first-order differential operators) on G.

To work in the opposite direction—from a Lie algebra g to the Lie group
G—we use the important exponential map between a Lie algebra and
respective Lie group. The exponent function can be defined in any
topological algebra as the sum of the following series:

exp(tX) =

∞∑
n=0

(tX)n

n!
. (9)

This correspondence is one-to-many since it does not distinguish locally
isomorphic Lie groups, say R and T.



One- and two-dimensional Lie algebra

We now list the Lie algebras of small dimensions over R.

• dimL = 1. There is only one one-dimensional Lie algebra, the line R
with null commutator.
The corresponding Lie group is either R or T, which are locally
isomorphic but have different global properties, e.g. compactness..

• dimL = 2. Let x and y be a basis in L.

1 If [x,y] = 0, then the commutator of any two elements is equal to 0.
The corresponding Lie groups are R2, T2, R × T.

2 If [x,y] = z 6= 0, then the commutator of any two vectors is
proportional to z. There exists in particular a vector a such that
[a, z] = z.
The corresponding Lie group is the affine ax+ b group, denoted here
by Aff. This is the smallest possible non-commutative Lie group. It is
already very prominent and will be considered in details.

Thus there exist two nonisomorphic Lie algebras of dimension 2.



Three-dimensional Lie algebra
low non-commutativity

dimL = 3. We consider the space L1 ⊂ L generated by all commutators.

1 If dimL1 = 0 then all commutators are equal to 0. Thus we have
again abelian case.
The corresponding Lie groups are R3, T3, R2 × T, . . .

2 If dimL1 = 1, then [x,y] = B(x,y)z, where z is a fixed vector and
B(x,y) is a skew-symmetric bilinear form in L. Two cases are
possible:

a) B(x, z) = 0 for all x ∈ L; then one can choose a basis x, y, z in L with
the commutation relations [x.y] = z, [x, z] = [y, z] = 0.
The corresponding group is the Heisenberg group H—one of two main
topics here.

b) There exists a vector x ∈ L such that B(x, z) = 1; in this case there
exists a basis x, y, z with the commutation relations [x,y] = [y, z] = 0,
[x, z] = z.
The corresponding group is R ×Aff (not original).



Three-dimensional Lie algebra
Semi-direct products

Suppose that dimL1 = 2. Note that the subspace L1 is itself a Lie
algebra, since L1 contains all commutators. We already know that there
are exactly two two-dimensional Lie algebras, with the commutation
relations [x,y] = 0 and [x,y] = y, respectively.
Let z be a vector which with x and y forms a basis in L. The operator
ad z : x 7→ [z, x] is a differentiation of the algebra L1 → L1.

• If [x,y] = y, then the Jacobi identity implies that the operator ad z
acts by x 7→ ay, y 7→ by, which contradicts the condition dimL1 = 2.

• If [x,y] = 0, then ad z can be an arbitrary matrix A of the second
order. We note however that the condition dimL1 = 2 implies that A
is nonsingular—we have obtained an entire family of Lie algebras,
parametrized by nonsingular matrices of the second order, up to the
conjugation.
The corresponding Lie group is a semidirect product of R2 with a
one-parameter group of its automorphisms, e.g. rotations.



Plane with automorphisms

Figure: Linear automorphisms of the Euclidean plane. Unimodular matrices
preserve the area, that is the symplectic form. They can be treated as rotations
of elliptic, parabolic and hyperbolic type.

This type of Lie groups will appear as subgroups of the Schrödinger
group considered later.



Three-dimensional Lie algebra I
Semi-simple case

Finally we consider the most non-commutative case dimL1 = 3, that is,
L1 = L. In short, there are two nonisomorphic 3D Lie algebras:

1 The commutation relations have the forms

[x,y] = z, [y, z] = x, [z, x] = y .

Mnemonically: cyclic permutation of three generators.
The algebra is the Lie algebra of skew-symmetric matrices of order 3:

ax+ by+ cz 7→

 0 c −b
−c 0 a

b −a 0

 .

The Lie group is SO(3). It is compact—the first example that a Lie
algebra dictates this condition. Surprisingly, this group will not be
considered here at all, but this does not diminish its importance.



Three-dimensional Lie algebra II
Semi-simple case

2 Another possibility is:

[x,y] = 2y, [y, z] = x, [x, z] = −2z.

This algebra is isomorphic to the Lie algebra of matrices of the
second order with zero trace:

x 7→
(

1 0
0 −1

)
, y 7→

(
0 1
0 0

)
, z 7→

(
0 0
1 0

)
.

The corresponding group SL2(R) is non-compact and will play the
major role in our consideration.
We also note that vectors 1

2x and y span a Lie algebra isomorphic to
the Lie algebra of the ax+ b group.
Summary: All lower dimensional Lie groups (except SO(3) will
appear in our study and will interact with each others.
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